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ABSTRACT 

An ~lgorithm is presented which computes optimal weights for arbitrary 
linear arrays. The application of this algorithm to in situ optimal reshading 
of arrays with failed elements is discussed. It is snown that aptimal 
reshading can often regain the original ~delobe level by slightly increasing 
the mainlobe beamwidth. Three examples are presented to illustrate the 
algorithm's etfectiveness. Hardware and software issues are discussed . 
Execution time for a 25 element array is typically between one and two minutes 
on a HP9836C microcomputer. 
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I. INTRODUCTION 

A linear array of discrete elements (sensors) often experiences element 
failures in situ. These failures can significantly increase the sidelobe 
levels of the array wavenumber response, depending on how many elements fail 
and where the elements are located within the array. We discuss here an 
optimal reshading (reweighting) algorithm which can be applied in situ to 
reduce the sidelobe levels to the original design level. In many common 
element failure situations, optimal reshading can regain the original sidelobe 
level by slightly increasing the mainlobe beamwidth. In arrays which 
experience significant element failures, optimal reshading is still possible, 
but may be of limited use. Three examples given below demonstrate a few of 
the possibilities. 

An algorithm for optimal reshading was first proposed in [1] by Streit 
and Nuttall. Their algorithm utilized the general purpose subroutine [2] to 
solve a specially structured "linear programming" problem. Unfortunately, 
their algorithm required hours of computation time and large amounts of 
computer storage on a minicomputer (the VAX 11/780) to optimally reshade a 50 
element array with five failed elements. Consequently, their algorithm is not 
useful for in situ optimal reshading. 

The shading algorithm proposed here differs from Streit and Nuttall 1 s 
primarily in that we solve their linear programming problem using a new 
general purpose subroutine [3,4], herein referred to as Algorithm 635. 
Algorithm 635 uses the special structure of the linear programming problem to 
reduce time and storage requirements by orders of magnitude. Algorithm 635 
can be incorporated easily in Streit and Nuttall 1 s original approach. A 
significant algorithmic improvement was discovered in the course of this study 
and is described below. The resulting shading algorithm is fast enough and 
small enough to execute successfully on microcomputers (such as the HP9836C 
used here) in only a few minutes. Typical execution time for a 25 element 
array is under two minutes; for a 50 element array, execution time is 
typically under 10 minutes. The current algorithm, and the HP9836C with its 
inherent transportability, comprise an effective system for optimal reshading 
in situ. 

II. OPTIMAL ARRAY SHADING 

The wavenumber response of a linear array composed of N discrete 
omnidirectional elements located at arbitrary fixed positions, Xn, is given 
by 

T(k) = ~ wn exp[-ikxn] 
n~ 

(1) 

where wn are the element weights and the independent variable k denotes 
wavenumber in radians per unit length. The element weights are required to be 
real, but this entails no loss of generality (see below in section Ill). 
Also, from (1), T(-k)=T*(k) for real weights (asterisk denotes conjugation), 
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so it is unnecessary to consider negative values for k and we confine our 
attention to non-negative k. 

The array response as a function of k can be considered to be composed of 
a mainlobe beamwidth and a sidelobe region. The objective of the optimization 
process is to make IT(k)l as small as possible on the user specified sidelobe 
interval. Array weights which achieve this objective are said to be optimal. 
The optimization process usually produces equi-valued sidelobes in the 
sidelobe region. 

Weights that are optimal for a full array do not remain optimal after the 
array experiences element failures. To partially compensate for failed 
elements. the array is optimally reshaded by undertaking the optimization 
process again and incorporating knowledge of which elements have failed. As 
the examples below will show, the effectiveness of this strategy depends upon 
how many elements have failed and the location of these elements in the array. 

The sidelobe interval is defined differently depending on the 
inter-element spacing of the array. For an array with periodically spaced 
elements and no failures. the sidelobe interval is defined to be 
[Ko.(2•/0)-Kol. where Ko is calculated from the desired sidelobe level 
and the number N of array elements.* 0 is the physical distance from sensor 
to sensor. Furthermore, the minimization interval can be reduced to 
[Ko.•/0], since the response of this array is symmetric about k~•/0. Ko 
is typically the point on the mainlobe response which is equal in magnitude to 
that of the sidelobes. but this is not always true for seriously degraded 
and/or aperiodic arrays (see example 3 below). For arrays with aperiodically 
spaced elements, the sidelobe interval, denoted by [K0,K1]. must be chosen 
by inspection of a nonoptimal beampattern or some other means. lT(k)j must be 
minimized over the full [Ko.K1] range s1nce, in general, an aperiodic 
array response is not symmetric about any wavenumber other than k=O. The 
ability to specify arbitrary Ko and K1 is particularly useful for those 
applications involving aperiodically spaced elements because lower sidelobe 
levels may be obtained by looking at different minimization regions. 

The optimization process deals with element failures in an array in the 
following way: 

Step 1. Maintain mainlobe beamwidth and permit the sidelobe levels to 
rise. 

Step 2. Regain, if possible, the original sidelobe level by broadening 
the mainlobe. 

Broadening the mainlobe by increasing Ko (step 2) is performed only if the 
sidelobe level, even after optimal reshading, has risen to an unacceptable 
value because of element failures. Thus. step 1 is normal algorithmic 

* For an N-element array and - t dB p~ak sidelobes, we have Ko=(2/D)arccos(l/Zo) 
where 2Zo=[r+(r2- l)l/2]l/M + [r- (r2-1)112]11M, r=lot/20, and M=N-1. 
The inter-element spacing 0 is assumed to be half of the so-called design 
wavenumber. and N is the number of array elements before failures. 
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procedure, and step 2 requires some iteration in specifying Ko and/or K1 
because a compromise has to be made between the mainlobe beamwidth and the 
level of the sidelobes. 

The solution of the array problem in the original formulation [1] is 
mathematically equivalent to solving an overdetermined system of complex 
linear equations. Unacceptably high sidelobes result if this system is solved 
in the usual least squares sense, so it is necessary to solve the system so 
that the magnitude of the maximum residual error is minimized. There now 
exists [3] an efficient algorithm and corresponding FORTRAN code [4] for 
solving problems of this sort to high accuracy. 

To obtain the beamformer equation in an appropriate format to utilize 
this algorithm, we normalize the peak response of T(k) so that T(O)=l. This 
gives 

N 
~ wn = 1 . 
n=l 

(2) 

We solve ~q. (2) for the Nth weight, wN• and substitute in eq. (1) to obtain: 

N-1 
T(k) = exp[-ikxN] + ~ wn[exp(-ikxn) - exp(-ikxN)] ( 3) 

n=l 

By sampling T(k) at the M equi - spaced points 

m=l, ... ,M, (4) 

we can write the problem of minimizing the peak sidelobe level of the array 
response as 

max 
l~m~M 

N- 1 

f m - L amn wn 

n=l 

where the complex numbers fm and amn are defined by 

( 5) 

( 6) 
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The problem (5) is precisely the form necessary for application of Algorithm 
635. For theoretical details of this algorithm, the interested reader is 
referred to [ 3]. 

Sometimes a few of the optimum weights for arrays with failed elements 
are observed to be negative, particularly those on the end elements. If the 
weights are applied in hardware, providing a 180 degree phase factor on the 
element output may not be desirable or possible. However, Algorithm 635 
allows the selection of all non-negative weights; this is implemented by the 
addition of constraints to eq. (5). Usually, but not always, an element is 
zeroed if it would have had a negative weight. From eq. (2) it follows that, 
if all the element weight values are required to be positive, they must be 
between 0 and 1. The requirement that weights w1, ... , wN-l be between 0 
and 1 can be written mathematically as 

1 < 1 wn - 2 - 2 , n= 1 , ... , N-1 

Algorithm 635 requires these N-1 constraints. Algorithm 635 can also 
incorporate any number of general constraints of the form 

where cm and dm are constants. The requirement that WN also be 
non-negative g1ves 

N-1 1 < 1 (1 - L: wn) - 2" -2" 
n=l 

or 

N-1 1 1 l: wn - 2 < 2 
n=l 

which is clearly a special case of the general constraints . 

III. ALGORITHM IMPROVEMENTS 

(7) 

( 8) 

(9) 

Several changes to the algorithm presented in [1] enable significant 
reduction in the need for computational intensity. Lewis and Streit (5] have 
proved that, for a general line array shaded so that it has optimal sidelobe 
levels when steered through the same number of degrees either side of 
broadside, there exists a set of optimal weights which are real. Thus, 
complex weights do not need to be considered. This fact allows an approximate 
4 
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eight-fold reduction in computation time and a two-fold reduction in storage 
requirements. 

It is clear that the 50 element example run in Streit and Nuttall [1] was 
significantly oversampled in wavenumber. Their beampattern can be reproduced 
with a four-fold reduction in the sampling of T(k) (see Example 2 below), and 
this in no way detracts from the practical application of the algorithm. A 
significant reduction in computation time is realized by decreasing the 
number, M, of beampattern samples. 

A significant algorithmic modification made to Algorithm 635 further 
decreases computation time. We have labeled this modification "fast costing" 
and it is an important step in making the algorithm feasible on microcomputers 
such as the HP9836C. In order to properly describe this modification, some 
familiarity with the simplex method of linear programming and reference [3] is 
assumed. 

Algorithm 635 can be broken into two fundamental computational operations 
called 11 COSt1ng 11 and 11 pivoting. 11 11 Costing 11 determines the so-called 11 minimum 
reduced cost coefficient .. and requires 2NM multiplies, where N is the number 
of discrete array elements and M is the number of samples taken of the 
beampattern. 11 Pivoting 11 is a basis update and requires N2 real multiplies. 
It is clear that the speed of the algorithm is intimately related to the 
number, M, of samples taken of the beampattern, as well as the number, N, of 
discrete array elements. Since M is larger than N, "costing" requires more 
multiplies than "pivoting." 

11 Costing" in the linear array application means that, in each simplex 
iteration, the "discretized absolute value 11 of every sidelobe sample of the 
wavenumber response function, T(km)• m=l, ... , M, is computed to determine 
the "minimum reduced cost coeffic1ent" of the current "basic feasible 
solution." By proceeding through a finite sequence of such 11 basic feasible 
solutions," we arrive at the solution of the "discretized problem." As shown 
in [3], this implies that the computed optimal wavenumber response function 
can have sidelobe levels that are theoretically at most .04 dB higher than the 
true optimum sidelobe level.* "Fast costing 11 refers simply to the fact that 
we first determine which of the sidelobe samples T(km), m=l, ... , M, has the 
largest true absolute value, and then compute the "d1scretized absolute value" 
of this one complex number. Therefore, only one "discretized absolute value" 
calculation is performed in each simplex iteration instead of M such 
calculations. The resulting reduction in computational effort is significant 
in microcomputing environments. The drawback is that the use of "fast 
costing 11 prevents the simplex algorithm from converging to a solution of the 
11 discretized problem. 11 Fortunately, however, it can be proved that we must 
approximate the solution in a well defined sense. In the linear array 
application, 11 fast costing" results in the computed optimum beampattern having 
sidelobe levels that are theoretically at most .08 dB higher than the true 

* The theoretical error of at most .04 dB is derived by taking 
20 log10(sec(~/p)), where p=32. The term sec(~/p) is the error bound 
discussed in [3]. 
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optimum level.* This is a small price to pay for major execution time 
improvements. 

IV. ALGORITHM IMPLEMENTATION FOR IN SITU USE 

An algorithm must be reliable, easy to use, and fast when executing on 
portable microcomputers, to be useful for in situ application. The following 
section details the most important hardware and software issues addressed to 
enable in situ optimal reshading of arrays with failed elements. 

The algorithm has been coded in BASIC and is comprised of Algorithm 635 
and an array processing driver program. Algorithm 635 solves the linear 
program for a set of optimal weights, given data supplied by the driver 
program. The driver performs the initial setup based on several user inputs 
and provides all program output. 

The driver program may be used with linear arrays having either periodic 
or aperiodically spaced elements. Program output consists of a graph of the 
optimal beampattern, a graph of the optimal normalized element weights, and 
several parameters pertinent to the specific problem. Provision is made for 
storing the weights in a separate data file for possible use with digital 
beamformers. 

An HP specific software modification was made by setting up the input 
data arrays (equation 6) in buffers so that they are accessible for a 
one-dimensional multiply. For large array dimensions, indexing a doubly 
subscripted data array and performing a dot product takes more time on the 
HP9836C than reading in a data array from a buffer, doing a MAT multiply, and 
performing a summation. (A MAT multiply is simply an element by element 
multiply of two equally dimensioned data arrays). However, this procedure is 
more time consuming when the input data arrays are very small (i.e., the 
number of elements in the line array is small). The breakeven point occurs at 
around 12 or 13 elements, so it was decided to incorporate this speed 
enhancement for the longer running, larger line arrays and tradeoff some speed 
reduction on the smaller line arrays. 

To obtain fast execution times for in situ application, we use one 
hardware speed enhancement, a 12.5 MHz fast CPU card with 16 kbytes of cache 
memory. This hardware supplement is available from HP for use on the 
HP9836C. Cache memory is fast memory resident on the CPU card for quick 
instruction acquisition. The use of the fast CPU board rather than the 8 MHz 
clock present in the standard computer configuration results in an approximate 
factor of two increase in observed speed. 

The complete program is precompiled by use of software and a floating 
point math card available from the INFOTEK company. Precompilation reduces 
most computational portions of the BASIC code to machine language, giving an 
additional three-fold reduction in computation time. It is also desirable to 
upgrade the operating system for the HP to its latest revision. All work on 

*Fast costing squares the error bound, giving sec2(~/p), or .08 dB when 
p=32. 
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these problems was run using the BASIC 3.0 operating system and the hardware 
supplements noted above. 

Computation time is defined as time spent in Algorithm 635 and does not 
include the small amount of setup time required by the driver program. 
Computation times are for the compiled BASIC program run on the HP9836C with 
the special hardware additions mentioned above. 

The program described here needs just over 303 kbytes of internal memory 
in addition to the memory required by the operating system to execute on the 
HP9836C. This is the amount of space required by fixing the maximum array 
size at N=50, and allowing at most M=256 beampattern samples. Users can 
change dimensions to suit their specific needs, but storage requirements 
presently are directly proportional to the product NM. Even for a much larger 
number of line array elements, it is unlikely that memory restrictions would 
prove to be a problem on the HP9836C since extra memory boards of 1 Mbyte each 
are readily available. 

Ongoing modifications should further enhance the capability and speed of 
the BASIC algorithm and driver. The addition of the ability to handle 
directional sensors is both useful and straightforward to implement. 
Execution of identical code on the new HP 300 series computers, which have a 
16.6 MHz clock rate, should further reduce the computation time. Computation 
times on the order of 5 minutes for a 50 element array and one minute for a 25 
element array are anticipated. 

It is possible to run the BASIC program in its uncompiled state. The 
execution of the program with cache memory and the fast CPU board as the only 
enhancements results in computation times of approximately 25 minutes for a 50 
element array and 4.5 minutes for a 25 element array. 

A copy of the entire program is available from the authors. Our specific 
implementation in HP BASIC utilizes several hardware and software devices to 
achieve computational efficiency, some of which may not be pertinent to other 
BASIC operating systems running on comparable machines. Users will 
undoubtedly find it necessary to make modifications to the code to allow it to 
run on other HP equipment or in BASIC on the VAX. 

V. EXAMPLES 

The following examples demonstrate the utility of the current algorithm 
for application in situ and provide insight into different situations that 
might arise when reshading equispaced arrays with failed elements. If optimal 
reshading can restore the array's original design sidelobe level by slightly 
increasing the mainlobe beamwidth, than we say that the optimal reshading has 
been effective. Optimal reshading is effective in many common element failure 
situations. When the array is severely degraded, optimal reshading is less 
effective but is still useful in reducing the negative impact of element 
failures. These examples demonstrate that the effectiveness of reshading 
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depends upon the number of element failures as well as the location of the 
failed elements within the array. 

Missing elements are modeled by zeroing the appropriate weights. In 
these examples. N refers to the number of intact array elements. M is the 
number of beampattern samples. and Ko is calculated by using the equation in 
an earlier footnote. We define the mainlobe width to be twice Ko in all 
three examples. 

EXAMPLE 1. Effective reshading 

This example demonstrates that reshading can restore the original 
sidelobe level of an array response by slightly increasing the mainlobe 
beamwidth. In a 25 element equispaced array. originally designed for -30 dB 
sidelobes. elements 2 and 4 have failed. Therefore, N=23. M=l28, and 
Ko~.6877. We first keep the mainlobe width fixed and allow the sidelobe 
level to rise. See Figure 1. The peak sidelobe level has risen to -26.86 dB 
below the mainlobe and the mainlobe width is unchanged. If the sidelobe level 
after reshading is too high, an alternative to discarding or repairing the 
array is to broaden the mainlobe beamwidth. In Figure 2. Ko is increased to 
.775 and the peak sidelobe level diminishes to -30.04 dB below the mainlobe. 
A tradeoff must always be made between an enlarged mainlobe beamwidth and an 
acceptable peak sidelobe level. In this case the mainlobe was increased 12.7 
percent in order to recover the original sidelobe level. Execution times on 
the HP9836C are between one and two minutes for Figures 1 and 2. 

EXAMPLE 2. Moderately effective reshading 

This example is taken from Streit and Nuttall [1]. Because of the 
improvements detailed in Section III above, the current algorithm runs faster 
on the HP9836C than on the VAX 11/780, although the floating point multiply 
t1me on the HP in its basic configuration is roughly 200 times slower than on 
the VAX. 

Consider a linear array with 50 equispaced elements. initially designed 
for peak sidelobes of -30 dB relative to the mainlobe. Figure 3 shows the 
classical Dolph-Chebyshev beampattern with -30 dB sidelobes throughout the 
minimization range [Ko.(2•/D)-Kol· This was computed using the current 
algorithm in 6.11 minutes . (This ideal case could have been computed 
analytically.) 

Now we suppose that five elements. 7,22,40.43,50, of the array have 
failed. The optimal response after reshading the array is shown in Figure 4. 
The peak sidelobe level has risen to -25 .51 dB. but we have maintained 
mainlobe beamwidth and retained full steering capability. In this example 
N=45 and M=l28. 

This example (Figure 4) took 7.47 minutes on the HP9836C and required 292 
simplex iterations. The algorithm of Streit and Nuttall required 38.4 minutes 
and 402 iterations on the VAX. 
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The recovery of the original sidelobe level is possible (Figure 5). The 
mainlobe beamwidth must be increased by the large factor 257.6 percent 
(K0=.871) and the execution of this task takes 8.98 minutes and requires 351 
iterations. The constraint that all the weights lie between 0 and 1 is used. 
It is necessary to use the constraint in this instance because otherwise a 
dislocation of the maximum response from k=O results. This dislocation is due 
to the presence of too many negatively weighted elements. 

EXAMPLE 3. A severely degraded array 

This example shows that, for severely degraded arrays, recovery of the 
original sidelobe level may not be possible by increasing the mainlobe 
beamwidth, even after optimal reshading. Consequently, control of the level 
of the first sidelobe must be relinquished in order to gain control of the 
level of the remaining sidelobes. 

Consider a 25 element array with elements 11 and 14 failed. The original 
sidelobe level is -30 dB. Here N=23, M=l28, and Ko=.6877. Figure 6 shows 
the algorithm's optimal response to this configuration. It is a significant 
observation that, in this case, small perturbations of Ko will not affect 
the level of the sidelobes. Only when the first sidelobe is incorporated into 
the mainlobe beamwidth (Ko=l.27) does the level of the remaining sidelobes 
return to the original desired value (see Figure 7). It is apparent that 
decreasing the minimization interval by moving Ko far enough to the right 
will improve the approximation, but one must give up control of the first 
sidelobe to reduce the others to acceptable levels. The net effect of losing 
two elements so close to the center is that negligible emphasis is placed on 
the remaining center elements (12 and 13) and the rest of the aperture is 
reshaded as if it were two separate arrays. 

This situation cannot be overcome by using different weights. The 
optimal property of the array problem formulation and solution tells us that 
no weights exist which can suppress all the sidelobes below a certain level. 
Thus, this array has lost too many elements and performance cannot be restored 
to its original design levels merely by reshading. 

We have chosen to relinquish control of the first sidelobe to gain 
control of the level of the remaining sidelobes. We pick the first sidelobe 
merely for ease of implementation; modification of the algorithm to forfeit 
control of a different sidelobe could also have been done. The need to 
relinquish control of the first sidelobe level has only appeared in cases of 
severe array degradation due to element losses. 

VI. CONCLUSIONS 

Arrays that have failed elements can be reshaded to obtain optimal array 
response functions. Optimal reshading is effective in many common element 
failure situations. When the array is severely degraded 1 reshading is less 
effective, but still can be used to reduce the negative 1mpact of element 
failures. 
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Optimal reshading can be accomplished in situ. quickly and reliably. on 
portable microcomputers using the algorithm described here. Arrays with 25 
elements routinely run in less than two minutes and computation time for a 50 
element array is less than 10 minutes. The algorithm can be applied to arrays 
of evenly or unevenly spaced linear geometry. 

The above examples (and others) support the generally accepted notion 
that failure of near-center elements is more detrimental to the array response 
than failure of near-edge elements. 

Another application of Algorithm 635 is to arrays of planar and arbitrary 
three dimensional geometry. Computation times for these more general arrays 
probably will depend upon N (number of sensors) and M (number of beampattern 
samples) in the same manner as for linear arrays. 

10 
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· Figure 1. Optimized array response and normalized weights 
for 25 elements with elements 2 and 4 missing. 
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Figure 2. Array response and normalized weights for Example 1 with Ko=.775. 

13 



TM No. 861004 

. . . . . . 
-5 

~ -ltll 
III 
~ -15 ......, 

.. .. -- ............ --~ .............. --- .... -~ .......................... ~ .................. -- .... ; .......................... ~-- ............ ---- -~-- ........ -.... --- .. ~ .................... .. 
: : : : : : : 
I t I I I 

.................. -~ ........ -...... .... -- .. : ...... .................... ~ .... ...................... ~- ..... .. -............... ~-- .. --- .............. -~ ------ ............ -~ ...... --- ...... .. 
I I 1 I I I 

: I 1 : : I 

----------·-------------~--- - ---------~--------------~ -- -----------~-------------~------------ - r----------. 
-21!1 

l? 
.... -- - -------~------- -- -----~---------- ---~-------------~--- - -------- -~-------------! .......................... l .................. .. : : : : : : : . . . 

a: -25 
:L 

-30 

-~5 

-400~· ~~~~~~~~~~=7.~~~~~~~~~~~~~~~~~ 

K0=.3381 K 

,.-.. 

a:: 
cr: 
w 
z 
H 
...J 
'-" 

(,_'1 

a: 
I: 

14 

.8 

.6 

.-4 

.2 

4 B 12 l6 2~ 24 28 32 38 40 44 48 
ELE~1ENT NUMBER 

Figure 3. Classical Dolph-Chebyshev array response and nonmalized weights 
for N=-50 and -30 dB s1delobes. 1 



TM No. 861004 

I 1 I I I 1 I 

I 1 : : I 1 : 

: : : : : : : 

\\ : : : : : : : I' 
-5 .. ·········-~- --········· -~---··· ··································-~---··········{······ ······-J·- ·· ······· t· 
111! 0 0 0 0 0 0 ..-.... - .. t ..... -.... -- .... ~-- .... ........ .. -- ... ~ .. --- .............. -- ~--· ................... --:---- ..... ............ ~-- .... .. .... -.......... -~- .. -.. -- ........... -:- .. .... -----.... .. 

o:J : : : : : : : 
~ -15 .. .... ........ .. ........ : .... .................... .. .: ................ .......... "'"'"'"" ...... ......... --~----- ............... ~- - -- .. ---- ...... -~--- .................. ;. .................. --
.._.. : : : I : : : 

: : : : : ! : 
-2Et · · · · -- · · · ·· · .J .. • • • • • • • • • -- ....... • • • .. •• ·-- • • • .. ,. • • • • • ·- • • • .. • • r" • .. " • • • •• • • • .. L. .... • • • • ·- • • • --~ ·- • • • • • • ·- -- • • ·- • • • • -· • • ·-

I t 1 I I I 1 
I 1 I I I 1 I 

~ -2 5 ... r·r\" ;ry ;.•'--~:-~=.:.:.•'·-~.:--"-'-'"·,: .. :-~. ·r-\J=-:,·1;. /-~·\/- ;.l.:..:.~-+-'-'-'-~i, - -.. i·-\··i .. ·r:.-=-\_.i:-\. f---==<_:.-'-: .... ~ .. :..:..:-.1:..:-( )"'.Z·~ .. 
-30 -· ~-. - ,~ -~ ·< ··· ···· ------~r J ........ tl :· .. 1.\ .. -- .. ~ ....... IJJ .. ~~-J_ -. . . ... ~.1~ ... --- ··-- - --~-\L ~--·· .. 

I • • ~J , , • 1 IJ, , : : : : : : : -3 s -.. ........ -- ........ , .. --- ...... -.... -.... -:-- ............ .. -- .... "':'"- .. -.... -.. -..... --~ ................ ........ .. , ............ -- .... .. .... -~ .............. --........ ~ ...... -.. -... .. - -.. 
I 1 I t I 1 I 

-40 ; I : : : : : 

~ 1.571 3.142 4.712 6.283 ?. 854 8.425 10.886 
1<0=. 3:38 1 K ( ~~AD/~1ETER) K 1 = 12. 228 3 

,..... 
a:: .8 
a: 
w 
z .6 H 
__J ....., 

(!l .4 
a: r:: 

.2 -- -i- -- -- -~- -- --- -- - - -- -- -- - -~ - --- -- - - -- -- - - - -- -- - -~- - -~- -- "iT --~-

1 4 B 12 l6 21il 24 28 32 38 40 44 48 

ELEME~·-JT NUt"lBER 

Figure 4. Optimized array response and normalized weights for 
50 elements with elements 7, 22. 40, 43. and 50 failed. 

15 



TM No. 861004 

1\ I I : : I I : I I l\ I I I I I I I 

--~-- -- -- --~---------- - -- f------------- ~-------------:------------ .l.------------ ~---- .. .. -.- -. ~--.-.. -- .,l.-

_____ ___ ___ l. ____________ L ____________ ]. __________ .. J. ____________ l. __________ ... L --····--· --- .L -- --~~·· ___ _ 
I 1 I ! I 1 I 

: : : : : ! : 
..... & -.. .. ........ ~ ........ - ................ ~- ....................... -\- ........ - ...... - ...... ·:- ----- .......... .. .. -~ -- - .... ...... -- - .. -~ .. .. .. - .. -- ........... -;...... .. .. - .... .... .. 

' : : : : : : 
: I : : I I : 

........... ~· ...................... --~ ........................ -~ .......................... r .......................... ~ ............... - ........ ~ ......................... ~· .................... .. 

: : : : : : : 
-2 5 ........................ -~- .... -........ -....... ~- .. -...... -- ........ -~-- ...... - .............. ~- ...................... -; ........ ---- .. ........ ~ .................. - .. -.. .,: .. .... - .. - .. --- .. - .. 

: : : : : : : 

-
3 0 

-- ·- ·- ..?--+·\iu'\T\" l\· i\i'Y -~~ ·/tl'\-·r"'i./\- ·r~,- ·r"':.rJ. · · 0\-·\r· i\.i\ ~ ·:tv~.:;-.. jf, ·-----· 
-:3 s ·--- · · · · · --+ ·-· ·-·---V-l~ · ·: -l f· ·v- ~- ·- l-----\;-+·\I--·- _\J- ·H /- ---- _IJ f -V--· · · ·-· --~ ----- --- -- -· 

: : '11' : v ' 1 v ! ~ ! : 
-40 ~ 1.571 3.142 4.712 6.283 ?.B54 8 . 425 HJ.886 

-5 

,..... -11!1 
III 
Q -!5 -....· 

-2EI 

K0=.8?1 K (RRD/METER) K1=11.6954 

,...._ 
a::: .8 
II: 
w 
z .6 H 
_j 
'J 

(..'l .4 
a: 
I: 

.2 

F1gure 5. Recovery of orig1nal sidelobe level, Example 2, Ko=.871. 
1 

16 



TM No. 861004 

\ ! : : : : : : / 
-5 .... \- ........ ---- -~- ............. - .. .. .... } .... - .. -............... ~ ........................ - ~ ........................ ~-- .... -................ ~- ............ -.......... ~- ............... -t'- .. 

I : : : : : : : ,' 
-llil ~ ' ' : ' ' : ' I 

~ - 15 ~ ~ ~\- :,:::: :; ~::: :~=::r :~~: ::_: r::: :·::3 ::_:: ::::.: E:: ::: ~ T :::::. ::::;r::::::: t::: 
-2EJ ---- lr\-···t·\·--,~ ------ -~--- ---- ------~-- -------- -y: -r --------- -t- -------::-.. -- ~---- ::-:-., .•. 

1 
. .~ -\----11, +---

~ -25 ------ --\-/~--\-l--------l--------· · ---l------- - ----~i------------i------ - ------~-------- - __ j\J~- ~1-----
:t: -30 ----- ---·~·: __ [_ __ )/-- ______ ; __ __ ____ ____ _ L __ __ . ------- 1. ............ 1 .... __________ L_ .. ___ . ~ ... L .. _______ __ 

: : : : : : d : 
-3 s .. .. .. .. .. .. .. -- ...... ; .. -.. f--- ........ -~- .. .. .. -.... -........ .. ~-- .... .. -.... -.... .. - -!- ............ - ......... --~- .... .. .. ...... - ........ ~ ........ - .... .. ll_ .... ~.............. .. ...... .. 

I I 1 I 1 
I I 1 I I I f 

-40 : : ! : : : : 
e 1.571 3.142 4.712 6.283 ?.854 8.425 10.886 

K0=.6877 K CRRD/METER) K1=11.8787 

.--.. 
il:: .8 
a: 
w 
z .8 H 
_J 
,_, 

L'l .4 
II: 
r: 

.2 

I :>:: X 
l 2 4 6 8 l(l l2 14 18 18 20 22 

ELEt'-1Et~JT NU~1BE~: 

Figure 6. Optimal array response and normalized weights 
for 25 elements with elements 11 and 14 failed. 

24 

17 



TM No. 861004 

\ I I : : I I : I 
. \ ... :-· .... -~ ............. l ............. ; ............. : ............. j ............. ~- ............ ~- .... ;·· ... /.. 

\ I\ : : : : : : : ;\ I 
I' 1

1 : : : I : : ! l ··v···y ··[·············1·············;···········-·r············T·············r············-r· ·· ···t ·· 
-..... .. .... -- -... ; - .. -- .............. -~- ... -.. -.. .... ---- .. : .. --.--- ---- -- ..... ---- .. -.. -....... -~ .... -...... --- ....... ~ ... -- ........ -........ ~ .. - .... -.......... .. 

I 1 I I I 1 I 

: : I : : : I 

-2l::' .. --------- -~--- .. -- - -.---- -~--- .. -- .. - ..... -~----------- .... ~ .. ---- ............. - ~ ------.--- .. -- ~- .. - ...... --- .... - .. ~ -- ----- .... --
I I 1 I I 1 

: : : I : : I 

I 1 I : I 1 : -2 5 . . . . . . . . . . . . ·' ...................... ..... •............. 1 ••••••••••••• J ••••••••••••• ~- •••••••••••• ~-. • ••••••••• 

: : : : : : : 
I I I I I I I 
I I I I I I I 

-30 .......... ·l•· ·· ·· · ·······'········· · ···· · ·· · ·· ·· ······~·· ···· ·· ·· ····'····· ···· ·· ···'· ······ ····· ·-~- ········· ·· 
;\'~~ ./' r\. II}/~~ /'"\ ,./\ r\.,,,•'nl t'\j;l,j" \ /\ ,./\ (\ /\ (\ .t:\. (\ f'"t /'~ 

~:: ·····----- ··v·lt·rt- \r_\~- - -~·~- - vi· ···· · \..l···· ·r·· · ·v --·"·--y-·-~l ... ~·· ... u- o--~~·· J·· ········--
~ 1.571 3.142 4.712 5.283 ?.854 9 . 425 10.995 

-5 

.·-. -Ja 
m 
1=1 -15 .._ .. 

K0= l. 27 K C RRD/fv1ETER) K l = 1 l. 296 4 

,-.. 
a:: .8 
a: 
w 
z .6 H 
_j .._. 

(...'1 .4 
a: 
E: 

.2 

X t }{ 
l 2 4 6 8 10 l2 14 lEi 18 20 22 24 

E L EI'1ENT t·>JUt·1B E R 
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